Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.007
Filtrar
1.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583440

RESUMO

This study was designed to examine the anti-oxidative stress effect of dimethyl fumarate (DMF) on pentylenetetrazole (PTZ)-induced epileptic mice, and to evaluate the correlation of its mechanism with the nuclear factor E2-related factor 2 (Nrf2)-mediated signaling pathway. The experimental mice were separated into three groups: control, model, and DMF groups. Mice in the model group were administered PTZ to establish an epilepsy model, mice in the DMF group were administered DMF concurrently when modeling, and mice in the control group were administered a 0.9% NaCl solution. The latency, severity, and frequency of epileptic seizures in mice after each treatment were recorded, and the modelling success rate was computed at the conclusion of the experiment. The mice were euthanized, their levels of malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), 8-hydroxy-deoxyguanosine (8-OHdG), and Nrf2 were measured, and the electron microscope was used to examine the mitochondrial damage of brain tissue. The latency of epileptic seizures was longer in the DMF group compared to the model group (P<0.05). The levels of MDA and ROS in the DMF group were lower than those in the model group (P<0.0001), and the activity of SOD in the DMF group was higher than that in the model group (P<0.0001); however, the levels of MDA and ROS were elevated and the activity of SOD was lower in both groups relative to the control group. The levels of 8-OHdG were lower in the DMF group than the model group (P<0.0001), however, the levels were higher in both groups compared to the control group. Mitochondrial abnormalities were more prevalent in the model group than in the DMF group, and more prevalent in both groups compared to the control group. The DMF group contained more Nrf2 content than the model group (P<0.0001), and both groups contained more Nrf2 than the control group. We concluded that the mechanism by which DMF reduced the level of oxidative stress in epileptic mice might involve the Nrf2-mediated signaling pathway.


Assuntos
Fumarato de Dimetilo , Epilepsia , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Pentilenotetrazol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Superóxido Dismutase/metabolismo
2.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519733

RESUMO

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Assuntos
Aminoácidos , Excitação Neurológica , Ratos , Masculino , Animais , Aminoácidos/farmacologia , Pentilenotetrazol/farmacologia , Ácido Valproico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Wistar , Encéfalo/metabolismo , Excitação Neurológica/metabolismo , Aminas/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Biomed Pharmacother ; 172: 116234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325264

RESUMO

Previously, we demonstrated that palmatine (PALM) - an isoquinoline alkaloid from Berberis sibrica radix, exerted antiseizure activity in the pentylenetetrazole (PTZ)-induced seizure assay in larval zebrafish. The aim of the present study was to more precisely characterize PALM as a potential anticonvulsant drug candidate. A range of zebrafish and mouse seizure/epilepsy models were applied in the investigation. Immunostaining analysis was conducted to assess the changes in mouse brains, while in silico molecular modelling was performed to determine potential targets for PALM. Accordingly, PALM had anticonvulsant effect in ethyl 2-ketopent-4-enoate (EKP)-induced seizure assay in zebrafish larvae as well as in the 6 Hz-induced psychomotor seizure threshold and timed infusion PTZ tests in mice. The protective effect in the EKP-induced seizure assay was confirmed in the local field potential recordings. PALM did not affect seizures in the gabra1a knockout line of zebrafish larvae. In the scn1Lab-/- zebrafish line, pretreatment with PALM potentiated seizure-like behaviour of larvae. Repetitive treatment with PALM, however, did not reduce development of PTZ-induced seizure activity nor prevent the loss of parvalbumin-interneurons in the hippocampus of the PTZ kindled mice. In silico molecular modelling revealed that the noted anticonvulsant effect of PALM in EKP-induced seizure assay might result from its interactions with glutamic acid decarboxylase and/or via AMPA receptor non-competitive antagonism. Our study has demonstrated the anticonvulsant activity of PALM in some experimental models of seizures, including a model of pharmacoresistant seizures induced by EKP. These results indicate that PALM might be a suitable new drug candidate but the precise mechanism of its anticonvulsant activity has to be determined.


Assuntos
Anticonvulsivantes , Alcaloides de Berberina , Epilepsia , Camundongos , Animais , Anticonvulsivantes/efeitos adversos , Peixe-Zebra , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Pentilenotetrazol/farmacologia
4.
Biomed Pharmacother ; 170: 115935, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101280

RESUMO

Chemical kindling is broadly used experimental model to investigate novel treatments on the process of epileptogenesis and coexisting behavioral comorbidities. The current study aimed to investigate the low dose perampanel (PER) (0.125 and 0.5 mg/kg) and pregabalin (PG) (15 mg/kg) as standalone treatments and in combination on kindling-induced seizure progression with concurrent electroencephalographic alterations. Mice were subjected to pentylenetetrazole (PTZ)-induced kindling followed by neurobehavioral assessment for anxiety-like activity and cognitive deficit through behavioral experiments. The monotherapy with PER at 0.5 mg/kg and PG at 15 mg/kg delayed the kindling process but PRP+PG yielded pronounced benefits and hindered the development of seizures of higher severity. PER+PG combination relieved the animals from anxiety-like behavior in various employed anxiogenic tests. Furthermore, the kindling-associated cognitive deficit was protected by PER+PG combination as increased alteration behavior, discrimination index and latencies to enter the dark zone were noted in y-maze, object recognition and passive avoidance tests, respectively while shorter escape latencies were noted in water maze. The brain samples of kindled mice had elevated malondialdehyde and reduced catalase, superoxide dismutase and glutathione peroxidase enzymes while treatment with PER and PG combination shielded the mice from heightened kindling-associated oxidative stress. Overall, the findings of the present study illustrate that concurrent administration of PER and PG effectively hindered the process of epileptogenesis by protecting neuronal excitability and brain oxidative stress. The results predict the dominance of PER and PG combination over monotherapy which might serve as an effective novel combination to combat drug resistance and behavioral disorders in epileptic patients.


Assuntos
Epilepsia , Excitação Neurológica , Humanos , Camundongos , Animais , Pentilenotetrazol/farmacologia , Pregabalina/efeitos adversos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Estresse Oxidativo , Anticonvulsivantes/efeitos adversos
5.
Brain Behav ; 13(12): e3305, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919236

RESUMO

INTRODUCTION: Epilepsy is one of the most common neurological diseases, while over one third of adults with epilepsy still have inadequate seizure control. Although mutations in salt-inducible kinases (SIKs) have been identified in epileptic encephalopathy, it is not known whether blocking SIKs can prevent pentylenetetrazole (PTZ)-induced seizures. METHODS: We first determined the time course of SIKs (including SIK 1, 2, and 3) in the hippocampus of PTZ treated mice. And then, we evaluated the effects of anti-epilepsy drug valproate acid (VPA) on the expression of SIK 1, 2, and 3 in the hippocampus of PTZ treated mice. Next, we investigated the effect of different dose of SIKs inhibitor YKL-06-061 on the epileptic seizures and neuronal activation by determining the expression of immediate early genes (IEGs) in the PTZ treated mice. RESULTS: We found that PTZ selectively induced enhanced expression of SIK1 in the hippocampus, which was blocked by VPA treatment. Notably, YKL-06-061 decreased seizure activity and prevented neuronal overactivity, as indicated by the reduced expression of IEGs in the hippocampus and prefrontal cortex. CONCLUSION: Our findings provide the first evidence that SIK1 affects gene regulation in neuronal hyperactivity, which is involved in seizure behavior. Targeting SIK1 through the development of selective inhibitors may lead to disease-modifying therapies that reduce epilepsy progression.


Assuntos
Epilepsia , Pentilenotetrazol , Camundongos , Animais , Pentilenotetrazol/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Epilepsia/tratamento farmacológico , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Hipocampo/metabolismo , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças
6.
Ceska Slov Farm ; 72(4): 172-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37805263

RESUMO

Neuroinflammation plays an important role in the pathogenesis of epilepsy, so it is necessary to clarify the influence of standard antiepileptic drugs as well as adjuvant agents (e.g., cardiac glycoside digoxin, which previously showed a clear anticonvulsant potential) on cyclooxygenase pathway and neuron-specific enolase under the conditions of chronic epileptogenesis. The aim of the article is to determine the effect of digoxin, sodium valproate, and celecoxib per se, as well as the combination of digoxin with sodium valproate on the content of cyclooxygenase 1 and 2 types, prostaglandins E2, F2α, I2, thromboxane B2, 8-isoprostane and neuron-specific enolase in the brain of mice in the pentylenetetrazole-induced kindling model. It was found that only the combination of sodium valproate with digoxin provides a complete protective effect (absence of seizures) and shows the clearest influence on neuroinflammation markers and neuronal damage than monotherapy with each of these drugs and celecoxib, which appeared to be an ineffective anticonvulsant. The obtained results indicate that digoxin is a promising adjuvant drug to classical antiepileptic drugs (mostly sodium valproate) in epilepsy treatment.c.


Assuntos
Epilepsia , Ácido Valproico , Ratos , Camundongos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Pentilenotetrazol/farmacologia , Pentilenotetrazol/uso terapêutico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Prostaglandina-Endoperóxido Sintases/uso terapêutico , Digoxina/uso terapêutico , Doenças Neuroinflamatórias , Ratos Wistar , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Fosfopiruvato Hidratase/uso terapêutico
7.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569781

RESUMO

Epilepsy is characterized by recurrent seizures due to a perturbed balance between glutamate and GABA neurotransmission. Our goal is to reveal the molecular mechanisms of the changes upon repeated challenges of this balance, suggesting knowledge-based neuroprotection. To address this goal, a set of metabolic indicators in the post-seizure rat brain cortex is compared before and after pharmacological kindling with pentylenetetrazole (PTZ). Vitamins B1 and B6 supporting energy and neurotransmitter metabolism are studied as neuroprotectors. PTZ kindling increases the seizure severity (1.3 fold, p < 0.01), elevating post-seizure rearings (1.5 fold, p = 0.03) and steps out of the walls (2 fold, p = 0.01). In the kindled vs. non-kindled rats, the post-seizure p53 level is increased 1.3 fold (p = 0.03), reciprocating a 1.4-fold (p = 0.02) decrease in the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) controlling the glutamate degradation. Further, decreased expression of deacylases SIRT3 (1.4 fold, p = 0.01) and SIRT5 (1.5 fold, p = 0.01) reciprocates increased acetylation of 15 kDa proteins 1.5 fold (p < 0.01). Finally, the kindling abrogates the stress response to multiple saline injections in the control animals, manifested in the increased activities of the pyruvate dehydrogenase complex, malic enzyme, glutamine synthetase and decreased malate dehydrogenase activity. Post-seizure animals demonstrate correlations of p53 expression to the levels of glutamate (r = 0.79, p = 0.05). The correlations of the seizure severity and duration to the levels of GABA (r = 0.59, p = 0.05) and glutamate dehydrogenase activity (r = 0.58, p = 0.02), respectively, are substituted by the correlation of the seizure latency with the OGDHC activity (r = 0.69, p < 0.01) after the vitamins administration, testifying to the vitamins-dependent impact of the kindling on glutamate/GABA metabolism. The vitamins also abrogate the correlations of behavioral parameters with seizure duration (r 0.53-0.59, p < 0.03). Thus, increased seizures and modified post-seizure behavior in rats after PTZ kindling are associated with multiple changes in the vitamin-dependent brain metabolism of amino acids, linked to key metabolic regulators: p53, OGDHC, SIRT3 and SIRT5.


Assuntos
Pentilenotetrazol , Sirtuína 3 , Ratos , Animais , Pentilenotetrazol/farmacologia , Vitaminas , Sirtuína 3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Convulsões/induzido quimicamente , Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
Biomed Pharmacother ; 165: 115093, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392651

RESUMO

Albizia adianthifolia (Schumach.) (Fabaceae) is a medicinal herb used for the treatment of epilepsy and memory impairment. This study aims to investigate the anticonvulsant effects of Albizia adianthifolia aqueous extract against pentylenetetrazole (PTZ)-induced spontaneous convulsions in mice; and determine whether the extract could mitigate memory impairment, oxidative/nitrergic stress, GABA depletion and neuroinflammation. Ultra-high performance liquid chromatography/mass spectrometry analysis was done to identify active compounds from the extract. Mice were injected with PTZ once every 48 h until kindling was developed. Animals received distilled water for the normal group and negative control groups, doses of extract (40, 80, or 160 mg/kg) for the test groups and sodium valproate (300 mg/kg) for the positive control group. Memory was measured using Y maze, novel object recognition (NOR) and open field paradigms, while the oxidative/nitrosative stresses (MDA, GSH, CAT, SOD and NO), GABAergic transmission (GABA, GABA-T and GAD) and neuro-inflammation (TNF-α, IFN-γ, IL- 1ß, and IL-6) were determined. Brain photomicrograph was also studied. Apigenin, murrayanine and safranal were identified in the extract. The extract (80-160 mg/kg) significantly protected mice against seizures and mortality induced by PTZ. The extract significantly increased the spontaneous alternation and the discrimination index in the Y maze and NOR tests, respectively. PTZ kindling induced oxidative/nitrosative stress, GABA depletion, neuroinflammation and neuronal cells death was strongly reversed by the extract. The results suggest that the anticonvulsant activity of Albizia adianthifolia extract is accompanied by its anti-amnesic property, and may be supported by the amelioration of oxidative stress, GABAergic transmission and neuroinflammation.


Assuntos
Albizzia , Epilepsia , Excitação Neurológica , Camundongos , Animais , Pentilenotetrazol/farmacologia , Antioxidantes/uso terapêutico , Anticonvulsivantes/efeitos adversos , Albizzia/química , Doenças Neuroinflamatórias , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Amnésia/tratamento farmacológico , Água/farmacologia , Ácido gama-Aminobutírico/farmacologia , Anti-Inflamatórios/efeitos adversos
9.
Epilepsy Res ; 195: 107190, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473590

RESUMO

Studies conducted in recent years have indicated a relationship between epilepsy and gut microbiota. Ion channels, excitatory/inhibitory balance and regulatory systems play a role in the pathophysiology of epilepsy. In addition, gut dysbiosis is also involved in the pathophysiology of epilepsy. This research investigated the impacts of probiotic mixture on epileptic seizures, Gamma aminobutyric acid (GABA), glutamate, and TAS and TOS levels in hippocampal tissue in the PTZ-induced acute seizure model in rats. Four groups were formed with male Wistar albino rats. The first and second groups were given 1 ml/day saline solution, and the other groups were given 0.05 mg/1 ml/day vehicle or 109cfu/1 ml/day probiotic supplementation, respectively via gavage for 21 days. A single-dose PTZ (45 mg/kg) was administered to induce seizure. The stages of seizure were analyzed according to the Racine scale. While ELISA was used to determine GABA and glutamate levels in the hippocampus, an automated colorimetric method was utilized to measure oxidant/antioxidant biomarkers. It was found that by delaying the first myoclonic jerk (FMJ), and the onset of the generalized tonic-clonic seizures, the probiotic mixture demonstrated anticonvulsant effects against seizures. The probiotic mixture was found to increase the inhibitory neurotransmitter GABA. It was also found to decrease TOS levels and increase TAS concentration. The findings of this study showed that probiotic mixture reduced oxidative stress with its positive effects against PTZ-induced epileptic seizures. Further studies are needed to reveal potentially related mechanisms.


Assuntos
Epilepsia , Probióticos , Ratos , Masculino , Animais , Ácido Glutâmico/metabolismo , Ratos Wistar , Pentilenotetrazol/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Ácido gama-Aminobutírico/metabolismo , Anticonvulsivantes/uso terapêutico , Estresse Oxidativo , Probióticos/uso terapêutico
10.
Eur Rev Med Pharmacol Sci ; 27(10): 4735-4751, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37259757

RESUMO

OBJECTIVE: Epilepsy, a neurodegenerative disorder, continues to throw challenges in the therapeutic management. The current study sought to ascertain if the therapeutic interactions between piracetam and diethylstilbestrol may prevent grand-mal seizures in rats. MATERIALS AND METHODS: Piracetam (PIR; 10 and 20 mg/kg) and diethylstilbestrol (DES; 10 and 20 mg/kg) alone as a low-dose combination were administered to rats for 14 days. The electroshock (MES; 180 mA, 220 V for 0.20 s) was delivered via auricular electrodes on the last day of treatment and rats were monitored for convulsive behavior. To elucidate the mechanism, hippocampal mechanistic target of rapamycin (mTOR) and interleukin (IL)-1ß, IL-6 and tumor necrotic factor-alpha (TNF-α) levels were quantified. Hippocampal histopathology was conducted to study the neuroprotective effect of drug/s. In vitro studies and in silico studies were conducted in parallel. RESULTS: To our surprise, the low dose of the combination regimen of PIR (10 mg/kg) and DES (10 mg/kg) unfolded synergistic anti-seizure potential, with brimming neuroprotective properties. The mechanism could be related to a significant reduction in the levels of hippocampal mTOR and proinflammatory cytokines. The docking scores revealed higher affinities for phosphatidylinositol 3-kinase (PI3K) in co-bound complex, and when docking DES first, while better affinities for protein kinase B (Akt) were revealed when docking PIR first (both drugs bind cooperatively as well). This indicated that the entire PI3K/Akt/mTOR signaling pathway is intercepted by the said combination. In addition, the % of cell viability of HEK-293 cells [pre-exposed to pentylenetetrazol (PTZ)] was increased by 327.29% compared to PTZ-treated cells (toxic control; 85.16%). CONCLUSIONS: We are the first to report the promising efficacy of the combination (PIR 10 mg/kg + DES 10 mg/kg) to restrain seizures and epileptogenic changes induced by electroshock by a novel mechanism involving inhibiting the PI3K/Akt/mTOR signaling.


Assuntos
Piracetam , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Ratos , Citocinas/metabolismo , Dietilestilbestrol/farmacologia , Células HEK293 , Interleucina-6 , Pentilenotetrazol/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piracetam/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Epilepsia Open ; 8(3): 1002-1012, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37277986

RESUMO

OBJECTIVE: Anterior nucleus of thalamus (ANT) has been widely accepted as a potential therapeutic target for drug-resistant epilepsy. Although increased volume of the ANT was also reported in patients with absence epilepsy, the relationship between the ANT and absence epilepsy has been barely illustrated. METHODS: Using chemogenetics, we evaluated the effect of ANT parvalbumin (PV) neurons on pentylenetetrazole (PTZ)-induced absence seizures in mice. RESULTS: We found that intraperitoneal injection of PTZ (30 mg/kg) can stably induce absence-like seizures characterized by bilaterally synchronous spike-wave discharges (SWDs). Selective activation of PV neurons in the ANT by chemogenetics could aggravate the severity of absence seizures, whereas selective inhibition of that cannot reverse this condition and even promote absence seizures as well. Moreover, chemogenetic inhibition of ANT PV neurons without administration of PTZ was also sufficient to generate SWDs. Analysis of background EEG showed that chemogenetic activation or inhibition of ANT PV neurons could both significantly increase the EEG power of delta oscillation in the frontal cortex, which might mediate the pro-seizure effect of ANT PV neurons. SIGNIFICANCE: Our findings indicated that either activation or inhibition of ANT PV neurons might disturb the intrinsic delta rhythms in the cortex and worsen absence seizures, which highlighted the importance of maintaining the activity of ANT PV neurons in absence seizure.


Assuntos
Núcleos Anteriores do Tálamo , Epilepsia Tipo Ausência , Animais , Camundongos , Núcleos Anteriores do Tálamo/fisiologia , Neurônios/fisiologia , Parvalbuminas/farmacologia , Pentilenotetrazol/farmacologia , Convulsões
12.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175408

RESUMO

This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Criança , Humanos , Peixe-Zebra/genética , Anticonvulsivantes/efeitos adversos , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Pentilenotetrazol/farmacologia , Modelos Animais de Doenças
13.
Pflugers Arch ; 475(6): 719-730, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100982

RESUMO

This study endeavoured to assess the effect of hemopressin (Hp), a nano peptide obtained from the alpha chain of hemoglobin, on chronic epileptic activity and its potential correlation with cannabinoid receptor type 1 (CB1). Male Wistar albino rats (230-260 g) were used. The kindling process was conducted by administering a sub-convulsant dose of pentylenetetrazol (PTZ) (35 mg/kg, i.p) three times a week for a maximum of 10 weeks. Tripolar electrodes and external cannula guides for intracerebroventricular (i.c.v) injections were surgically implanted in the skulls of kindled rats. On the day of the experiment, doses of Hp, AM-251, and ACEA were administered prior to the PTZ injections. Electroencephalography recordings and behavioural observations were conducted simultaneously for 30 min after the PTZ injection. The administration of Hp (0.6 µg, i.c.v) resulted in a decrease in epileptic activity. The CB1 receptor agonist ACEA (7.5 µg, i.c.v) showed an anticonvulsant effect, but the CB1 receptor antagonist AM-251 (0.5 µg, i.c.v) displayed a proconvulsant effect. The co-administration of Hp (0.6 µg, i.c.v) and ACEA (7.5 µg, i.c.v) and of Hp (0.6 µg, i.c.v) and AM-251 (0.5 µg, i.c.v) produced an anticonvulsant effect. However, when AM-251 was administered prior to Hp, it produced a proconvulsant impact that overrode Hp's intended anticonvulsant effect. Interestingly, the co-administration of Hp (0.03 µg) + AM-251 (0.125 µg) unexpectedly exhibited an anticonvulsant effect. Electrophysiological and behavioural evaluations demonstrated the anticonvulsant effect of Hp in the present model, highlighting the possibility that Hp may act as an agonist for the CB1 receptor.


Assuntos
Canabinoides , Epilepsia , Animais , Ratos , Masculino , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Pentilenotetrazol/farmacologia , Receptor CB1 de Canabinoide , Ratos Wistar , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hemoglobinas , Relação Dose-Resposta a Droga
14.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108760

RESUMO

Epilepsy, with about 70 million affected people worldwide, is one of the biggest challenges of medicine today. It is estimated that about one-third of epileptic patients receive inadequate treatment. Inositols have proved effective in many disorders; hence, in the current study, we tested potential antiepileptic properties of scyllo-inositol (SCI)-one of the most common commercially available inositols-in zebrafish larvae with pentylenetetrazol-induced seizures. First, we studied the general effect of SCI on zebrafish motility, and then we tested SCI antiepileptic properties over short (1 h) and long (120 h) exposure protocols. Our results demonstrated that SCI alone does not reduce zebrafish motility regardless of the dose. We also observed that short-term exposure to SCI groups reduced PTZ-treated larva motility compared to controls (p < 0.05). In contrast, prolonged exposure did not produce similar results, likely due to the insufficient concentration of SCI given. Our results highlight the potential of SCI use in epilepsy treatment and warrant further clinical studies with inositols as potential seizure-reducing drugs.


Assuntos
Anticonvulsivantes , Epilepsia , Animais , Anticonvulsivantes/efeitos adversos , Pentilenotetrazol/farmacologia , Peixe-Zebra , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Larva
15.
Mol Biol Rep ; 50(4): 3389-3399, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739316

RESUMO

BACKGROUND: The Chinese herbal formula Chaihujia Longgu Muli Decoction (CD) has a good antiepileptic effect, but its mechanisms remain unclear. Therefore, in this study we explored the molecular mechanisms of CD against epilepsy. METHODS: Twelve-day-old SD rats were randomly divided into a normal group, model group, valproic acid group, and CD high, medium, and low groups. Except for the normal group, the other groups were given an intraperitoneal injection of pentylenetetrazol (PTZ) to establish epilepsy models, and the Racine score was applied for model judgment. After 14 consecutive days of dosing, the Morris water maze test was performed. Then, hippocampal Nissl staining and immunofluorescence staining were performed, and synaptic ultrastructure was observed by transmission electron microscopy (TEM). RhoA/ROCK signaling pathway proteins were detected. RESULTS: In PTZ model rats, the passing times were reduced, and the escape latency was prolonged in the Morris water maze test. Nissl staining showed that some hippocampal neurons swelled and ruptured, Nissl bodies in the cytoplasm were significantly reduced, and neurons were lost. Immunofluorescence detection revealed that the expression of PSD95 and SYP was significantly reduced. Electron microscopy results revealed that the number of synapses in hippocampal neurons was significantly reduced and the postsynaptic membrane length was significantly reduced. Western blot analysis showed that the RhoA/ROCK signaling pathway was activated, while SYP, SPD95, and PTEN expression was significantly decreased. After treatment with CD, neurobehavioral abnormalities and neuronal damage caused by epileptic seizures were improved. CONCLUSION: CD exerted an antiepileptic effect by inhibiting the activation of the RhoA/ROCK signaling pathway.


Assuntos
Anticonvulsivantes , Epilepsia , Animais , Ratos , Anticonvulsivantes/farmacologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Pentilenotetrazol/farmacologia , Ratos Sprague-Dawley , Convulsões , Transdução de Sinais , Quinases Associadas a rho/metabolismo
16.
Biomed Pharmacother ; 160: 114406, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791567

RESUMO

Tiagabine (Tia), a new-generation antiseizure drug that mimics the GABAergic signaling by inhibiting GABA transporter type-1, is the least studied molecule in chronic epilepsy models with comorbid neurobehavioral and neuroinflammatory parameters. Therefore, the current study investigated the effects of Tia in a real-time manner on electroencephalographic (EEG) activity, behavioral manifestations and mRNA expression in pentylenetetrazole (PTZ)-kindled mice. Male BALB/c mice were treated with tiagabine (0.5, 1 and 2 mg/kg) for 21 days with simultaneous PTZ (40 mg/kg) injection every other day for a total of 11 injections and monitored for seizure progression with synchronized validation through EEG recordings from cortical electrodes. The post-kindling protection from anxiety and memory deficit was verified by a battery of behavioral experiments. Isolated brains were evaluated for oxidative alterations and real-time changes in mRNA expression for BDNF/TrkB, GAT-1 and GAT-3 as well as neuroinflammatory markers. Experimental results revealed that Tia at the dose of 2 mg/kg maximally inhibited the development of full bloom seizure and reduced epileptic spike discharges from the cortex. Furthermore, Tia dose-dependently exerted the anxiolytic effects and protected from PTZ-evoked cognitive impairment. Tia reduced lipid peroxidation and increased superoxide dismutase and glutathione levels in the brain via augmentation of GABAergic modulation. PTZ-induced upregulated BDNF/TrkB signaling and pro-inflammatory cytokines were mitigated by Tia with upregulation of GAT-1 and GAT-3 transporters in whole brains. In conclusion, the observed effects of Tia might have resulted from reduced oxidative stress, BDNF/TrkB modulation and mitigated neuroinflammatory markers expression leading to reduced epileptogenesis and improved epilepsy-related neuropsychiatric effects.


Assuntos
Epilepsia , Excitação Neurológica , Animais , Masculino , Camundongos , Anticonvulsivantes , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Pentilenotetrazol/farmacologia , RNA Mensageiro/genética , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Tiagabina
17.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768918

RESUMO

Epilepsy is a neurological disease that burdens over 50 million people worldwide. Despite the considerable number of available antiseizure medications, it is estimated that around 30% of patients still do not respond to available treatment. Herbal medicines represent a promising source of new antiseizure drugs. This study aimed to identify new drug lead candidates with antiseizure activity from endemic plants of New Caledonia. The crude methanolic leaf extract of Halfordia kendack Guillaumin (Rutaceae) significantly decreased (75 µg/mL and 100 µg/mL) seizure-like behaviour compared to sodium valproate in a zebrafish pentylenetetrazole (PTZ)-induced acute seizure model. The main coumarin compound, halfordin, was subsequently isolated by liquid-liquid chromatography and subjected to locomotor, local field potential (LFP), and gene expression assays. Halfordin (20 µM) significantly decreased convulsive-like behaviour in the locomotor and LFP analysis (by 41.4% and 60%, respectively) and significantly modulated galn, and penka gene expression.


Assuntos
Epilepsia , Pentilenotetrazol , Animais , Anticonvulsivantes/toxicidade , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Pentilenotetrazol/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Peixe-Zebra
18.
Eur J Pharmacol ; 944: 175583, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764352

RESUMO

OBJECTIVES: Fisetin is a flavonoid molecule known to be neuroprotective by its multiple mechanisms. The present study was designed to explore the effect of fisetin in the pentylenetetrazole (PTZ) kindling-induced cognitive dysfunction in mice. METHODS: Kindling was established by the intraperitoneal administration of PTZ in a subconvulsive dose (25 mg/kg). Mice were administered fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable cognition-enhancing effect. The kindled mice were evaluated for cognition using behavioral tests-elevated plus maze and passive avoidance response. Then, the oxidative stress markers, gene expressions and neurotransmitters levels were estimated in the hippocampus and cortex of mice. RESULTS: Passive avoidance response and elevated plus maze paradigms showed that fisetin administration improved the cognitive function in kindled mice. The increased levels of lipid peroxidation and protein carbonyl were modulated upon fisetin administration through increasing the levels of antioxidants (reduced glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase) in the hippocampus and cortex of kindled mice. Upregulated gene expressions of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were observed in the hippocampus and cortex of fisetin-administered mice which play a crucial role in cognitive function. Furthermore, alterations of neurotransmitter levels (dopamine, GABA, and glutamate) and acetylcholinesterase (AchE) were ameliorated by fisetin administration in the hippocampus and cortex of kindled mice. CONCLUSION: Our findings suggest a therapeutic potential of fisetin against cognitive dysfunction associated with PTZ-induced kindling.


Assuntos
Disfunção Cognitiva , Excitação Neurológica , Camundongos , Animais , Pentilenotetrazol/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neuroproteção , Acetilcolinesterase/metabolismo , Disfunção Cognitiva/metabolismo , Cognição , Estresse Oxidativo , Hipocampo
19.
Acta Pharm ; 73(1): 59-74, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692466

RESUMO

Nitric oxide (NO) participates in processes such as endothelium-dependent vasodilation and neurotransmission/neuromodulation. The role of NO in epilepsy is controversial, attributing it to anticonvulsant but also proconvulsant properties. Clarification of this dual effect of NO might lead to the development of new antiepileptic drugs. Previous results in our laboratory indicated that this contradictory role of NO in seizures could depend on the nitric oxide synthase (NOS) isoform involved, which could play opposite roles in epileptogenesis, one of them being proconvulsant but the other anticonvulsant. The effect of convulsant drugs on neuronal NO (nNO) and endothelial NO (eNO) levels was investigated. Considering the distribution of neuronal and endothelial NOS in neurons and astrocytes, resp., primary cultures of neurons and astrocytes were used as a study model. The effects of convulsant drugs pentylenetetrazole, thiosemicarbazide, 4-aminopyridine and bicuculline on NO levels were studied, using a spectrophotometric method. Their effects on NO levels in neurons and astrocytes depend on the concentration and time of treatment. These convulsant drugs caused an increase in nNO, but a decrease in eNO was proportional to the duration of treatment in both cases. Apparently, nNO possesses convulsant properties mediated by its effect on the glutamatergic and GABAergic systems, probably through GABAA receptors. Anticonvulsant properties of eNO may be the consequence of its effect on endothelial vasodilation and its capability to induce angiogenesis. Described effects last as seizures do. Considering the limitations of these kinds of studies and the unexplored influence of inducible NO, further investigations are required.


Assuntos
Convulsivantes , Óxido Nítrico , Humanos , Convulsivantes/efeitos adversos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Óxido Nítrico Sintase Tipo III , Inibidores Enzimáticos/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Pentilenotetrazol/farmacologia , Neurônios
20.
Nutr Neurosci ; 26(7): 582-593, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35535580

RESUMO

Objectives: The citrus fruits peel contains a variety of bioactive metabolites that have shown multiple therapeutic effects. However, despite having substantial ethnomedicinal value, citrus peels remained underexplored and regarded as bio-waste. This present study was planned to investigate the effect of a characterized peel extract of Citrus reticulata c.v. (CRE) in pentylenetetrazole (PTZ)-induced kindling and associated cognitive and behavioral impairments in a mouse model.Methods: The kindled animals were treated daily with CRE (100 and 200 mg/kg) and challenged with a sub-effective dose of PTZ every 5th day to record the severity of seizures. In the end, different tests were performed to record behavioral and cognitive performance.Results: CRE-treated kindled animals showed a significant suppression in seizure severity following 20 days of the treatment. In the T-maze test, the extract treatment resulted in a marked increase in the spontaneous alternations, whereas it showed no change in anxiety behavior of kindled animals in the elevated plus-maze test. In both forced swim and tail suspension tests, CRE treatment demonstrated a considerable reduction in immobility time. However, no change in overall locomotion was observed in the open field test among all the groups. An increase in the hippocampal Creb and Bdnf expression and decreased glutamate-to-GABA ratio were observed in the CRE-treated kindled animals.Discussion: The results showed that CRE treatment suppresses epileptic seizures and associated cognitive deficits and depression-like behavior in kindled mice. The gene expression findings supported that the observed protective effects of CRE be due to its interaction with CREB signaling.


Assuntos
Citrus , Excitação Neurológica , Camundongos , Animais , Convulsões/induzido quimicamente , Pentilenotetrazol/farmacologia , Flavonoides/uso terapêutico , Flavonoides/farmacologia , Anticonvulsivantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...